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1 The Model

1.1 Households

Households are line-up [0,1] and openness is v.
(Nominal) Households’ budget constraint is given by:

RC,+B,+BE,+M,=B,_,(1+i,,)+B,(1+i,,)E +M,, +WN, +D, —RTR,.

Dividing both sides of the previous expression by P; yields:
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t

which can be rewritten as:

C,+B,+QB; +1,=IL"B, , (1+i,,)+Q (I ) B, (1+i,)+1L,L, ,
ey PR '
PR

which is identical with Eq.(4) in the text.

B + B E.P
with B,=—+, B,=—+ and Q =—*+.
P P

t t t

Alternatively, we have:

*
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which can be rewritten as:
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Further, the previous expression can be rewritten as:
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Further, the previous expression can be rewritten as:

1

B+ QB LA

C +
1

L1
1+it]
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' +—tN, +——TR,
P, P,

t t

t

; E . "
= [Btl (1 + It71> + E —Q_,B,, (1 i ) +L

t—1

Let define A, = II;*. Then, the previous

. « E -
(1 + It71>Bt71 + Qtletfl E_t<1 tihy ) +L

t—1

expression can be rewritten as:

1 1 W, D
Ct +mAt+1Ht+1 +Lt [1_m]:At +7tNt +_t_TRt'

t t t

where we assume that the UIP. The previous expression is identical with Eq.(6) in the
text.
Households’ optimization problem is given by:
t
max U,
Ct rCr+1rNr :At+1 oLy ; ﬁ ‘

s.t.

U, =[u(c,L)-V(N,)|Z,

1 1 W, D
Ct +mAt+1Ht+1 +Lt [1_m]:At +7tNt +_t_TRt .

t

t t t

The Lagrangean is given by:

L=p3" (U(CtlLt)_V(Nt)>Zt —f—ﬁt“(U(Ct+1lLt+1)_V<Nt+1))zt+1 4

W, PR 1 1
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>\t/8 t Pt t Pt t t 1+it tH1T L t 1+it
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P

FONCs are given by:
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ac /8 c,t™—t ﬁ)\t

t



oL

t+1 t+1
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aL t 1 t+1
= — —1II ., + =0,
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which can be rewritten as:

)\t ct t' (1 1)
/\t+1 :Uc,t+1 t+17 (1-2)

(1-3)

nt t’

>\t = ﬁ)‘rHH:l (1 + it) , (1-4)

-t
A\ =U,|——| z,(1-5)

t

where ), denotes Lagrange multiplier.

Combining Egs.(1-1), (1-2) and (1-4) yields:
U,z =B(1+i)I U, 2., .(1-6)

t+1" ¢, t+1

Combing Egs.(1-1) and (1-3) yields:

w Vv
—t =0 (1-7)
AU,
Combing Egs.(1-1) and (1-5) yields:
U i
Tt . (1-8)
u 1+/

c,t

Note that Egs.(1-6)—(1-8) are identical with Egs.(7)—(9) in the text.

1.2 International Risk sharing Condition

Under the assumption of complete markets for securities traded internationally, a
condition analogous to Eq.(1-6) must also hold for the representative household in the
foreign country:



U:,tz: = 5<1 + i: )(H:H )71 U:,tJrlZl:rl -(1-9)

Egs.(1-6) and (1-9) can be rewritten as:

B 1 U Z

ﬂ 1:<1+/t)Ht4:1 U:,tl%tl’

A
Uc,r t

Combining the previous expressions each other yields:

a1 Uerin Z, . - U:, 7
<1+It)]‘_‘[t-:l U:jlé_?:(l—“_lt)(l_[tﬂ) Uilf_j*l'

Dividing both sides of the previous expression by (1+it)H;+11 yields:

Ui Zipy _ 1+i, Py P Ui 2oy

* *

Uc,t Zt 1+it Pt Pt+1 Uc,t Zt
. 1+i, E., . . . . )
Plugging the UIP 1—:E— into the previous expression yields:
+It t

* *
UC,t+1 Zt+1 _ Qt UC,f+1 Zt+1

* *

Uc,t Zt Qt+1 Uc,t Zt

In the period —1, the previous expression is given by:

*

U, Z, Q, U, Z
Uc,fl 271 C2O Uc,fl 271

which can be rewritten as:

*

-1 — UC171 éi(u*o)fla{’ ZO )
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. U ..z, 1 o » . :
Let define E—Z—Q— as an initial condition. Then the previous expression can
c—1 =-1 —1

be generalized as follows:



Ut =0(U,) " Qé, (1-10)

t

which is identical with Eq.(10) in the text.

1.3 Optimal Allocation of Goods

Let define consumption indices as follows:

1 1-v
C=——77—"0¢C JCrL,
t (1—]/)17’/]/ F,t

with  C, E[f C,.(J j} " and Cm—[f C.(J dj}

By solving cost-minimization problems for households, we have optimal allocation of

(1-11)

-1

expenditures as follows:

—&

.
cH,f(f>:[f<’) C,.,(1-12)
H,t

and
(P
.- ¢, naa
F,t
with:

P z[ KD <f>“d] and £, —[f }

Now, we get total demand for goods produced in the SOE and the ROW. Optimization

problem is given by:

max C,,
CHt CFt

s.t.

Eq.(1-11) and X, —(P,.C,, +P.,C,)=0.

The Lagrangean is given by
1

(1 — y)lfy v’
The FONCs is given by:

L

C/}I;VC.‘I—'/,t + /\<Xt - PH,tCH,t - PF,tCF,t) .
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I
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These previous expressions can be rewritten as:

(1-v)'v7"C,iCl, =P

H,t?

17VC7(17V) —\P

Ht “F,t - Ft*

(1- u)f(lfy) Ve

Combining these expression yields:

P
(1 — V)lflC,;;CFlt =L,

F,t

which can be rewritten as:
P

H,t

—C
p H,t

F,t

v

F,t
1—v

. (1-14)
. 14

1—-v

Plugging Eq.(1-14) into Eq.(1-11) yields:

S, 'Cae

1 P Y
e et
v’ T
:m(l—l/> St CH,t (1-15)
1
= S Cyr

The definition of the PPl in the SOE is given by:
P =R, "P, . (1-16)

Eq.(1-15) can be rewritten as:
C,.=(1-v)s/c,.(1-17),

Which is identical with the LHS in Eq.(3) in the text.
Eq.(1-14) can be rewritten as:



C, =—5C

t-Ft e
1%

Plugging the previous expression into Eq.(1-15) yields:

1-v
1 1—v Y
Ct = 1-v [ StCF,t] CF,t
(1—1/) v v
1
= _StliycF,t
1%

which can be rewritten as:

c,. =vs, " c,, (1-18)

which is identical with the RHS in Eq.(3) in the text.
1.4 Domestic Producers

Production function is given by:

Y.()=N() " (1-29)

-1 e—
Combining Eq.(1-19) and Y, E[flyt<j>6dj] 1 with the definitions of the PPI indices
0

yields:
P,.(j) "
Y, <j) = ["’f_m] Y., (1-20)
H,t
Plugging Eq.(1-19) into Eq.(1-20) yields:

e(ﬁ]‘}

P v

H,t

o

which can be rewritten as:

N, (j) :[MJ =

P

H,t

1
Let define N, = f N, (j)dj. Plugging the previous expression into the definition yields:
0



= | Yiodj,
0 PH,I‘ t j

LAV g
0 PH,I‘ ‘

The previous expression can be rewritten as:
N =YQ", (1-21)

€

1 P A ) 1o
with Q:f [#] dj . Eq.(1-21) is identical with Eqg.(14) in the text.
0
H,t

Now we consider firms’ maximization problem following Gali (2015). The firms’

maximization problem is given by:

maxz HkEt {At,ﬂrk [Pi]

P
Hr k=0 t+k

'BH,th+k|t - Ct+k (Y1*+k|t )}} ’

P | P, U, z
with Y, = [L] Yoo @nd A, = Qt,t+k[ - ] =" +t_+l] being the real
H,t+k Pf UC,f+k Zf

stochastic discount factor where Q denotes the price of a one period discount

t,t+k
bond paying off one unit of domestic currency. The previous expression can be

rewritten as :

max
Pyt

The FONC for firms is given by:




1 D—¢pE n p—<c—1pe
At,t [F][(l - 6) PH,t P/—/,th - Mctlt <_6)PH,t 1P/—/,th]

t

1 P—¢pE n p—<c—1pe
+€At,t+1 [_][<1 - 8) H,; P/-;,t+1Yt+1 - Mct+1|t <_€)PH,t 1PH,t+1Yt+1] ,

t+1

t+2

1 p—<p¢ n p—<c-1pe
+62A“+2 [_J[<1_€)PH,t w2 e — MG, (_€>PH,t ' H,t+2Yt+2]+"':0

which can be rewritten as:

1) - (B € (P -~
At,t [_] PH,t [i] Y, _—Mct|t i] Y,
R PHrf e—1 PH,t
1 )5 (B | S B |
+9Af f+1[ ] P t[ = ] Y _—Mctnﬂlt L] Vi ’
Pis PH,t+1 e—1 PH,t+1
1) (A ) e (B
+92At,t+2[ ] PH,t - ] Yt+2 _—Mcr+2|r L] Yt+2 +---=0
Pr+2 PH,t+2 e—1 H,t+2

with mc" , =C’

e = Clie (YMM) being the nominal marginal cost.

By using the definition Y, E[PL] Y., the previous expression can be rewritten
H,t+k
as:
1= € n
At,t ;] PH,thIt _;Mctltyﬂtl
t
1 ||= € n
+9At,t+l . ’DH,th+1|t _—Mct+1|tyt+1|t ,
Pt+1 e—1
2 1 o € n
+0 At,t+2 T PH,th+2|t _—MCt+2|th+2|t +---=0
Pt+2 -1

which can be rewritten as:
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1
At,t [_
R

1 ~ € n
+9At g4+l [ JYt+1|t [PH,t - —Mct+1|t]
P e—-1

Ytlt [ﬁ/-l,t e 1MC:|t]

1 D n
+6° At t+2 [ ]Yt+2|t [PH,t MCt+2lt] +---=0
P e—1
The previous expression can be compact expression as:

1 ~ €
At,t+k [_]Yt+k|t [PH,t _;Mct+k|t]

which is identical with Eq.(15) in the text.
Nominal marginal cost is given by:

0, (1-22)

n _ VVt+k
t+klt T
MPNt+k|t
oY, oY,
with MPN,,, =—< and MPN,,, =—
t+k t+k|t

Plugging the definition of the real marginal cost into Eq.(1-22) yields:

0 U, Z 1 - £ n
§ : - — ]Yt+k|t [PH,t - Mct+k|t =0.
k=0 Uc Jt+k Zt 'Dt+l< e—1

By multiplying U :Z: both sides of the previous expression yields:

> 1
3
t Pt+kUc,t1+k

k=0
which can be rewritten as:

1 'BH t 3 Mct+k|t Ht+k
1 Zt+1Yt+k|t ——
Pt+kUc,t+k PH,tfl e-1Fh ,

Zt+1Yt+k|t =0,

4kt

~ €
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H,t e 1 ]

NgE

(09)'E,

=0.

=
i

0

n

: t+klt PH t+k . .
Let define MC, . = and HHHH,{EP' . Then, the previous expression
H,t+k H,t—1

can be rewritten as:

Z;% P UL =0.

t+k~c,t+k

P £
Zt+1Yt+k|t [PL - —1Mct+k|tHH,tfl,t+k ]

H,t—1 €—
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Let define X, , =—""—. Then the previous expression can be rewritten as:

H,t—-1

S0/ [u2.) 2

k=0

PH,tfl v €
y Htlly _g—HH,t—l,t+kMCt+kIt =0 . Note that

t+k]t Ht
t+k -1

P

c—1 is multiplied on both sides of the previous expression. The previous expression

can be rewritten as:

which can be rewritten as:

ot tlt t|t

- P P |- P
ol et

t H,t 6_1PH,t71
-1 P P,. P ~ e P P
+‘96[ U;:+1 Zt+1 Yt+1|t e [XHt_ S MCt+1|r
( ) 'Dt+1 PH,t+1 PH,t e—1 PH,t PH,tfl ’
- P P P,. P ~ P P P
+(Qﬂ)2[(U;tl+2) 1Zt+2 Y, oo Hit2 "Hitt THe THia [XHt_ € Mutvr Thitr Thp MC, .,
Pt+2 PH,t+2 PH,t+1 PH,t 5_1PH,t+1 PH,t PH,t—l
4+..=0
which can be rewritten as:
Uz ly,g(s,) T X 2 Yo
( c,t) t r|rg( t) H,t H,t_; H,t tlt
_ -1 1 1l & 9
+96[(Uc,tl+1) Zt+1 Yt+1|tg(5r+1> HH,It+1HH,1t[XH,t_;HH,tJrlHH,tMCtJrllt]
(0] 2 rna(s)
HOBF|(Uite)  Zea] g (S ) T TALTLLTLE
_;HH,t+2HH,t+1HH,tMCt+2|t
4...=0
: T LT : : : ,
with g(St):P == |5 =S, . The previous expression can be rewritten as:
Ht Ht Ht
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1yt 1o € 1yt .
[(U 1) Zt]YtltSt HH,ltXH,t_E_l[<Uc,t1> Zt}YtItSt Mctlt

Y S—l/ H71

t+1t =t 17 H e+

1
HH,tXH,t

+05)(Uf) " 2

Y. 1S, AMC

t+1t 2t +1 t+1lt

e i 1 96 (U;t1+1 )71 Zt+1

(087 |(U) 2

3

5—1(06)
4+...=0

By moving the terms related to the marginal cost to the RHS yields:

Y SOOI TR

tH2)tt4+27 T Ht4+27 T H 41

1o
1_‘[H,l‘)(H,l'

Y .S, . ,MC

t+2)t~t+2 t+2[t

(U.L,) 2z,

[(U‘l)_lzt}v SUILAX,,

c,t tjt=t

1

+06)(U) " 2o

+(08) |(U:ka) " 20

Y ST

t+1t2t+11 T H

1o
HH,tXH,t

Y SUTI: ITE

tH2)t~t4+27TH,t+27 T Ht+1

I, X

H,t

€ 1 .
c— 1 [(UC,:-) Zt }Yﬂtst MCtlt

£ _ -1

— +8_19ﬂ[(uc,t1+1) Zt+1
€
e—1

Y. .S, AMC

t+1t =t +1 t+1]t

Y .S, ,MC

t+2/t2t+2 t+21t

_I_

(087 |(U:ts) 2.
4.
which can be simplified as follows:
(02) 2 ]psoms

—vy7-1 -1
VoS HH,t+1HH,t

t1e2t 41

)

Ht —i—gﬁl(U;tlﬂ )71 Zt+1

2 - -1 —vy— - -
+<0ﬁ> [(Uc,tlJrz) Zt+2 Yt+2|t5t+2HH,1t+2HH,1t+1HH,1t +--

(U) 2 ]ws e,

Y. 1S iMC

t+1e2t+1 t1lt

= +9ﬁ[<U;tl+1 )71 Zia

1yt .,
+(9ﬁ)2[<uc,tl+2> LY, S Mct+2|t+"'

tH2t~t+2

Then, we have:
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o0 _ 6 o0 1 ,
XHtZ l( ct+k> t+k t+k|t t+kHHHt+h e 12 [( ct+k) Zt+k Yt+k|tst+kMCt+kIt
k=0 k=0
or:
e — -1 -1
Z [( ct+k> Z Yt+k|tg(st+k) MCt+kIt -(1-23)
Y e-1'=
Xue == ) Lk
Z l( ct+k) Zt+k H»kltg( t+k> HHH t+h
k=0 h=0
Plugging
w,
MC:+k|f =Lt
MPNt+k|t
-1
_W aYt-«-k
- t+k 8N
t+k|t ’
a -1
=W, [(1— )N, ]
Wik
— Tk N(!
1_ t-+k|t
into the definition of the marginal cost yields:
w,
MC,,, =——N?, . (1-24)
PH,t+k (1_a)

1.5 Market Clearing Condition
The market clearing conditions in the SOE and the ROW are given by:
V(1) =Gy (1) +EX. () +6,(j), (1-25)

where EX,(j) is export demand for the good produced by firm jand G,(j) denotes

the government purchase for the good produced by firm j, respectively.

Combining G, = [f G ] - with the definitions of the PPIs yields:

G, - (1-26)

Similar to Eq.(1-12), we assume that the demands for C;,,(j) follows as:

14



EX,, (1-27)

Analogous to Eq.(1-18), demands for domestic goods in foreign country is assumed as:

* -1
P
EX, =v| £
A

. \—1
P .

:u[ ] v, (1-28)
P

F,t

)/t*

=uSsY,
which is identical with Eq.(17) in the text.
Plugging Egs. (1-12), (1-20), (1-26) and (1-27) into Eq.(1-25) yields:

PH,t<-I)] Yt: B(j) CH,t+ PH,t*(-I> EXt+ Pf.‘(-’) Gt
PH,t PH,t Ht Ht
P(H '
_[RU) (Cys +EX, +6,)
PH,t
PH,f (j)

. P
and P,_,lt:%. By dividing

t t

where we use the LOOP implying that P, (j)=

PH,t (-I)

H,t

both sides of the previous expression [ ] yields as follows:

Y, :CH,t +EX, +G,.
Plugging Eqgs.(1-17) and (1-28) into the previous expression yields:
Y, =(1-v)S/C, +vSY, +G,, (1-29)

F,t

P * *
where we apply the definition of the TOT S,=—= and Y, =(, . Eq.(1-29) is identical

H,t

with Eq(21) in the text.

1.6 Government Budget Constraint
The government budget constraint is given by:
P,.G, +B._, (1+i_,)=PTR, +B,+AM,, (1-30)

which is identical with Eq.(18) in the text.
Dividing both side of Eq.(1-30) by P: yields:

15



P _\P AM
46,4+ B, (1+i.,) ;1 =TR, +B, + p L.

t t t

P
Let define the (ex-post) real interest rate Ptz(1+it)—t. Then the previous
t+1

expression can be rewritten as:

-v AM
S$,'G,+B, P, ,=T.+B, + o -, (1-31)
t

P

P
where we use 2L =_"t __— g~ Eq(3-1) is identical with Eq.(20) in the text.
P BPL,

t H,t

The level of seignorage, expressed as a fraction of steady state output can be

approximated as:
AM, 1 _AM M, R 1
rRY R M,P,Y
— A,\/It Mtfl R‘fl 1
M_ Py RY
AM, P_, 1
:—_Ltﬂ_
M, _. P Y

t

.(1-32)

t—1
Quantity theory of money implies as follows:
MV =PY,

which can be rewritten as:

Vi=—
Y

Plugging the previous expression into Eq.(1-32) yields:
AM, 1
P

t

xAm,, (1-33)

with Y=V ' being the inverse of income velocity of money. Note that Eq.(1-33)
ignore changes in the inflation and the deviation of the real money balance from its
steady state.

If we do not ignore them, we have:

AM, 1AM, P, 1
Y M., P Y
o[ M s £
M_ | "t Ly
M, | oL,
=xIn : t—1 -
M, , L

16



1.7 Trade Balance

Similar to Gali and Monaceli (2005, RES), We define the real trade balance as follows:

NX
: :Yt _g(st)ct _Gt
P, , (1-34)

:Yt—StVCt—Gt

with NX, being the (nominal) trade balance. Eq.(34) is identical with Eq.(22) in the

text.
Note that:

Pt P.‘-:Il,;VP.‘:Vt v
g (St) 5 p St

2 The Steady State

We focus on equilibria where the state variables follow paths that are close to a
deterministic stationary equilibrium, in which II,, =II, =1. Further, we assume

Z,=7 =1 and G,=0.

Egs.(1-6) and (1-9) implies as follows:

1
ﬁ:1_+i
.(2-1
' (2-1)
1+i
Eq.(1-7) implies that:
W_Y (22
P U

c

Eq.(1-8) implies as follows:

%: Bi. (2-3)

ch.(1—23) implies:
o5+ 08y ] (U) ra(s) tmac,
1+05-+(05) +-- (v.") " |ra(s)

which can be rewritten as:

1=
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MC=M", (2-4)
€
e—1
Eq.(1-24) implies:
1w

MC =———N". (2-5).
1-aP,

with N\ = being the constant markup.

Eq.(1-16) can be rewritten as:
v, WP,

Do =TT (2-6
U, PHP( )

Plugging Eq.(2-5) into Eq.(2-6) yields:

|4 1-aP
D 2" %0 (2-7)
U, N°M P

Let define:

g(s) zpﬂ: 5. (2-8)

H

Plugging Eq.(2-8) into Eq.(2-7) yields:

vV, 1l-«

U, N°Ms"’

which can be written as:

V== y . (29
N*MS”

Eq.(1-10) implies:
Ut =9(U) " q(S), (2-10)

c

with g(S)=Q. Note that:

* * 1-v
EP EP P P
Q=—=—""—=—"T—=1-F| =¢"" (2-11)
P PH VPF’ PH IPFV PH

Eq.(2-10) can be rewritten as:

ut=0(uU;) s,

c

where we use Eq.(2-11). The previous expression can be rewritten as:

*

s'=0(U) " su,.

c

Plugging the previous expression into Eq.(2-9) yields:
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1-a M
vV, = —.(2-12)

N® s9(u;)

Let define H(S,U:)E V. N . Plugging this definition into Eq.(2-12) yields:

H(S,UZ)E(l—a)Wj)l.

Notice that H, <O, Isim)H(S,U:):—i—oo and IimH(S,UZ>:0.

S—o0

On the other hand, the market clearing Eq.(1-29) implies:

Y=(1-v)S"C+uvSY". (2-13)

Because of C :F<Uc’1> and Eq.(2-10), we have:

C:F[QS‘(U:)_lq(S)}

_ F[ﬁ(UZ )" 51”} ’

with F being the operator of function.
Plugging the previous expression into Eq.(2-13) yields:

Y= (1—1/)S”F[19(U: )_151‘”} +vSC’. (2-14)

*

Let define J(S,C*)E(l—y)S”F[ﬁ(UC)71517”]+1/SY*. Note that J.>0 |,

limJ(5,C")=0 and limJ(S,C")=+o0.

5—0 S—oo

Hence, given a value for €, ¥ and Y, Egs.(2-12) and (2-14), jointly determine the
steady state value for S and q(S), i.e., the steady state value of the TOT and the real
exchange rate (Figure TA-1). This way to show how the TOT as well as the real exchange
rate is pinned down in the steady state is almost same as Gali and Monacelli (2002,
NBER-WP).

Dividing both sides of Eq.(2-13) by C" yields:

Y* =(1-v)s" C +1S.
C o

For convenience, and without loss of generality, we can assume that initial conditions
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(i.e., initial distribution of wealth) are such that ¢ =1 which implies that Q= ¢

)

Plugging this condition into the previous expression yields:
Y
C*

(1-v)s"Q+vs
(

1-v)S"S"™" +us,
S

which can be rewritten as:
Y =SY", (2-15)

by using Y =C" which is the steady state market clearing condition in the foreign

country.

Let assume symmetric labor market in the foreign country. Then, following condition is

applicable:
Yo 179 (2-16)
U (N)'M

similar to Eq.(2-7).
Dividing Eq.(2-16) by Eq.(2-9) yields:

* * \ &

%

n

%

n

N

N

_Yes (217)
U

c

Combining Eq.(2-10) and the initial condition yields:

*

Ye _stv, (2-18)
U

where we use Q=S"". Plugging Eq.(2-18) into Eq.(2-17) yields:

«

=5.(2-19)

*

%

n

vV

n

*

N

In the steady state, Eq.(14) in the text implies as follows:

N =Y.

Plugging the previous expression into Eq.(2-19) yields:
V(Y e

I =S,

Vn Y ]

where we use the foreign country has production technology identical to Eq.(14).
Plugging Eq.(2-15) into the previous expression yields:
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* 1
Yo _ g,
v

n

Let multiply (Uc )71 on both sides of the previous expression. Then, we have:

* 1—(1—a)(1-v)

v
n—§ 1o 1 (2-20)
UC UC

4
where we use Eq.(2-18). Let define U—"El—(I) where ® denotes the steady-state

c

wedge between the marginal rate of substitution between consumption and leisure

and the marginal product of labor (See Benigno and Woodford, 2005). We assume this

*

%

n

%
steady state wedge is common throughout the world, i.e., U—” =1-d= U

c c

Then, Eq.(2-20) boils down to:

$=1,(2-21)

which implies that the PPP is applicable in the long run.
Plugging Eq.(2-21) into Eq.(2-15) yields:

Yy=Y".(2-22)

Plugging Eq.(2-21) into the initial condition yields:
c=cC.

Combining the previous expression, the steady state market clearing condition in the
foreign country Y =C" and Eq.(2-22) yields:

Y=C.

Finally, Eq.(1-22) implies:

3

p= MC", (2-16)

e—1
which can be rewritten as:
-1
[ £ ] —MC,
e—1
which corresponds to Eq.(2-4).

3 Log-linearization of the Model

3.1 Log-linearizing the International Risk Sharing Condition
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By raising both sides of Eq.(1-10) to the power of —1, we get:

. Z
Uc,t = Uc,tQt_lﬁ_l ? *

t

Total derivative of the previous expression yields:

du =9 U, -9 UdQ +9'UdzZ —9 U dz .
c,t c,t c c t c t

dQ, =—9 V.U U, dC, +9 U U, dC, + U U9 *dz, + U, ‘U9 *(—1)dZ

t
U u dC U u. _.dc u . U
=Yl le gty gt e et Tt L9t e dz, —yt= dz,

c (o} C UC U: c c
" U U .\dc u . U

Dividing both sides of the previous expression yields:

U U zZ
log| —~ |=log| —£|—logQ —|log| =+

The previous expression can be rewritten as:

ét =—q, +ét* _Ctl (3'1)

c c t

~ U ey U* Z*
where g, =logQ,, §t5|og[uc’t], & Elog[uﬁf] and g‘tz—log[?t].

Total derivative of the definition of the real exchange rate is given by:
dP.

t

dP,
dQ =—-t+ ——t
. P P

F
which can be rewritten as:
qt :pF,t _pt (3-2)
Dividing both sides of the previous expression by P yields:

P P P
log|+|=(1—v)log| 2~ |+ viog| ££ |,
g[P] =) g[PH] g[PF

which can be rewritten as:
p,=(1-v)p,, +vp,,.(3-3)
Plugging Eq.(3-3) into Eq.(3-2) yields:

22



G = Pr _[(1_V)pH,t +VpF,t]. (3-4)
:<1_V)(p/=,r _pH,t)

Total derivative of the definition of the TOT is given by:
dP.

ds,=—"—P.P,*dP,,
H
dPF,t dPH,t ’
PP

F H

which can be rewritten as:
P P

log S, =log|—=~|—log| 2% |.
P. P,

Then, we have:

St = Prt —Puy- (3-5)

Plugging Eq.(3-5) into Eq.(3-4) yields:

q,=(1-v)s,.(3-6)

Plugging Eq.(3-6) into Eq.(3-1) yields:
&=—(1-v)s,+& ¢, (3-7)

which is identical with Eq.(23) in the text.

3.2 Log-linearizing the Market Clearing Condition
Eq.(1-29) can be rewritten as:

Y,=(1-v)S/C, +vS,C, +G,, (3-8)

Total derivative of Eq.(3-8) yields:

dY, =|(1—v)Cv +vC"|dS, +(1—v)dC, +vdC, +dG, . (3-9)

By dividing both sides of Eq.(3-9) by Y yields:
Y, C C, G
log| -t |=|(1—v)v+vllogs, +(1—v)log|—+|+vlog|—|+lo —t]
g[v] (=) +v]ioes, +(1-v) g[C] g[C] g[Y
Y

—v(2—v)log$, +(1—u)log[%]+u|og[%:]+|og[i]

where we use the fact that Y =C =Y =C". The previous expression can be rewritten
as:
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y, :I/(Z—V)St —|—<1—V)£‘t —|—1/)7: +4g,, (3-10)

. A _
with ctzlog[%], Iog[y ]where we use y, =C, _Iog[%] Eq.(3-9) to derive
Eq.(3-10). Eq.(3-10) is identical with Eq.(24) in the text.

3.3 Log-linearizing Euler Equation

Total derivative of Eq.(1-6) is given by:

du., =U.8d(1+i,)+U (-1)dIL,,, +dU,,., —U.dZ +U.dz,.,.
Note that 3=(1+i) " andi=p. Thus:
(1+l )
=U 6 <_1) dHt+1 +dUc,t+1 - Ucht +Ucdzt+1 :
+p
Dividing both sides of the previous expression by U, yields:
du,, d(1+i,) du,
Uclt = 11p —dll , + U:+1 [_<dzr+1_dzt>]'
which can be rewritten as:
U 144, U V4
log| =<~ |=lo —logIl, , +log| —=1 | —|—log| -2
g[ U, ] 8[1+p] gl g[ ) g z

A 1+i o 4 .
Let define irEIog[1+lt], m, =logll, and ptz—log[é—“]. Then, the previous
P t

expression can be rewritten as:

§ =8t — Ty — P, (3-11)

which is a class of log-linearized Euler equation. Eq. (3-11) is identical with Eq(6-5) in
the text.

3.4 Log-linearizing Marginal Utility of Consumption

Marginal utility of consumption can be depicted as:

U

c,t

=U

It

-1
U,

— .(3-12
U] (3-12)

c,t
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Total derivative of Eq.(3-12) is given by:

-1 -2

U U 1 _, 0U,
dUc.t|U// U_: +U/(_1)[U: U_CUII+U/<_1>UCZ oL ]st
+U Ul +U(—1)ii 1y +U,(-1)U.? 20U, dc,
le UC / Uc UC Ic / c oC
ul 1 d U U, (U, . YU, )dc
:UIZ — _ZUCIL_t+ UIC_CC_UI —= LC CCC :
U ) Y L U, ullu uvu )¢
dcC
=U, L£+ Ye “yc—-u. Ye ¢ Yee || 9
L , u U ¢
Dividing both sides of the previous expression by U, yields:
du,, dc,
UcILdL + Ulc C_ﬁc_*_ Zcc c
u U L U U U JcC
Uy, U, dC
u L U ¢

which can be rewritten as:

ér = Uit _O-ét ’
which is identical with Eq(26) in the text.
3.5 Deriving the FONC for Domestic Producers

Total derivative of Eq.(1-23) yields:

[dMC,, +68dMC, .,

dX
(Qﬂ) dMCt+2|t +--

e = 51[1+05+(05)2+---}

+

(MC)[dHH,r + eﬁdHH,h% (05) Heva T }

e—1

Then, the previous

Note that 1+95+(95)2+---:ﬁ and Mc=E

expression can be rewritten as:

Gﬁ t+1|t (Hﬁ)

o, — (1 Qﬁ)[dMC

Cf+2|t + .
mMcC !

+[dHH,t +00dE, (IL,,,., )+ (05)2 dE, (I, ., )+ }

which can be rewritten as:
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B — P = (1 08)| e +08mCeine +(08) e+

2
+ Tz + eﬁﬂ—mﬂ + <‘96> T 42 +- }
. - Mct+k|t
with mce.x =log e | mc, ,,, —mc , mc, =logMC,

mczlogMC:—Iog[g_l].
€

Previous expression can be rewritten as:

B — Pus 1 = (1—08)| e +0Bmces +(08) meea +-- |

+

P = P +08(Prcs = P )+ (08) (Procso = sy ) -
=(1-0p)
+(1=08)py +08(1=08)p 11 +(08) (1=08)py s ++-| = e s
=(1-08)(mcu + Py, )+ 08(1—08)(mese + Py

+<‘9ﬂ>2 (1 - 9/3)(”/7\("‘*2“ + pH,t+2) +ee— P

r/n\cnt + Qﬁr/n\ctﬂlt + (95)2 r/n\ct+z|r 4. }

(3-13)
Note that:

—

MCeskit + Py ek = MCyiige T Prpie — logMC

=mc, . —logMC

-1
n 3
= mchlt — IOg [;] . (3-14)

=mc,, +Iog[€i1]
=MC/ g+ 1
Plugging Eq.(3-14) into Eq.(3-13) yields:
Boy —Pugs =(1—08)(mch, + )+ 08(1—08)(mcly, + 1)
HO8) (1=08)(mcl. e + 1)+ Py
=(1- 05)[mc,ﬂt +08mc 4 +(08) mclpy ++ } — Py
+(1-08)[1+05+(08) ++-|
=+ (1= 08 mef, +08me], +(08) My +++] =Py s

which can be rewritten as:
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,u+ 1 95 Z 95 me+k|t (3-15)
k=0

(Corresponding to Eq.11 in Chap. 3, Gali, 2015)
Eq.(3-13) can be rewritten as:

p “Puia <1 eﬁ)[mctlt +Hﬁmct+1|t -f—(@ﬁ) mcm“ +-. }

+

P = P +08(Prcs = P )+ (08) (Procsa = Pusea) -
=(1-6p9)
+(1=08)py +08(1=08)p 11 +(08) (1=08)pys ++-| = e s
= (1-08)(me +py, ) +08(1-08)(meesse + Py )

+(08) (1= 08)(MCesar + Pz )+ Pue s

r/n\cnt + Qﬁr/n\ctﬂlt + (95)2 r/n\ct+z|r 4. }

Eq.(3-13) can be rewritten as:
s — P2 = (1-08)(03)" mee-u +Z 08) 7y, 3710
pars
Eq.(3-16) can be rewritten as:
B — P = (1—08)mea +,, +(1-08)> (08) mee.s +Z 03)r, ., - 317
k=1
Forwarding Eq.(3-17) one period ylelds:
Bucss — P = 95 D (08) e+ (06) 7,
Multiplying 05 on the both sides of the previous expression yields:
05 (a1 = Pu )= (1—05) i (65)" mceoue +Z 08) Tusue”
Plugging the previous expression into Eq.(3-17) yields:
Bus —Pues =08 (Byrrs—Puy )+ (1—08)mcu +,, . (3-18)

Calvo-pricing’s transitory equation is given by:

1

PH,t:[HPI-}tgl (1_9>ﬁ;;€]175
Log-linearizing the previous expression around the steady state yields:
Py = HpH,tfl + (1 - e)ﬁH,t .

Subtracting ps:-1 from the both sides of the previous expression yields:
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T = (1_ 9)(5/4; - pH,t—l) .(3-19)

Plugging Eq.(3-19) into Eq.(3-18) yields:

1 1 —~
T g e =085 +(1=08)mcu + .,
which can be rewritten as:

0 1

T e =08 g men (1—68)mee .

Multiplying both sides of the previous expression by % yields:

(1-68)(1-0) ~

Ty = ﬁﬂ-H,H»l + Tmcflf :

Let assume Y, = Nf;kC;tQ;(l,:“). Then, the (nominal) marginal cost for an individual firm

that last set its price is given by:

Mcn aNt-H(lt

trkt — Witk ay
t+k

=W, MPN.}

t+k t+k|t
-1
_ W 8Yi‘+k
— Vt+k
ON
t+k|t

alea Qf(lfa)

tklt® ek
=W,

— "Vt+k aN

t+klt

=W,

t+k

(1N |

Note that the (nominal) average marginal cost is given by:

n ON
MC. =W, aYHk
t+k
o |
=W, 8Nt+k
t+k
—a 1 1o
=W [(1 - a>Nt+k] Q0

Total derivative of the (nominal) marginal cost for an individual firm that last set its

price is given by:
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«
n N

—a]? —a—
dMCt+kIt :Edvvwk +W<_1>[<1_Q>N ] (1—04)(—CV>N 1dNt+k|t
_ WN® dW,,, 1 (1—a)aN™ dN,_
l1-a W (1—04)N7‘1 (1—04)N7a N
_ WN® dW,,,  WN° adNt+k|r

1-a W 1-a N
Dividing both sides of the previous expression by MC" vyields:
dMCtn+k|t _ 1—a|WN® dW,., + WN* adNt+kIt
mc" WN(1l—a W 11—« N

— dVVt+k + Q dNt+kIt
w N

which can be rewritten as:

o ,\
MC e = Wik + an gy - (3_20)

Log-linearization of the average (log) marginal cost is given by:

mC:+k =W+ O‘ﬁt+k -(3-21)

Subtracting Eq.(3-21) from Eq.(3-20) yields:

~ ~

n n __
Me, e —MC e = a<nt+k|t o nt+k) ’

which can be rewritten as:

n _ n ~ ~
M, e = MC iy + a<nt+klt o nt+k> :

Plugging the logarithmic production function y,. , =(1—a)A,,, and y, =(1—a)A,

tk|t

into the previous expression yields:
n . n a ~ N
mCH—kIt =mc, + 1—a yt+k|t Vi)

—&

Y,

.« Which is given by

p
Plugging logarithmic demand function of YHkltE[L
H,t+k

9r+k|r = —5(;3H,t —pH,t+k)+ V.., into the previous expression yields:

n n Qg /o
MC e = MCy i _m<pH,t - pH,t+k> .(3-22)

Plugging Eq.(3-22) into Eq.(3-15) yields:

29



(63)"

NgE

ﬁH,t :M—l_(l_eﬁ)

n Qg .
mc., — 1—a pH,t - pH,t+k

x~
Il

0

+(1-6p)

NgE

(075 e
(95) [ Ciut pH,r+k] - Py s
11—« 1-«

x~
I

0

which can be rewritten as:

(1 lcv_)Zae M+(1 Qﬁ)

+(1-6p)

NgE

k n (075
(96> mc, + pH,r+k]
11—«

Il
o

NgE

k (0% ,
<9ﬁ) pH,t+k  Mepk + pH,t+k]
11—«

=~
Il
o

& l—a)+tae
+(1—95)Z(95)k —He ik +% Ht+k]
k=0 —Q
& l-a)+ac
1 05 Z :U’_,ut+k +%p%f+k]

k=0 —«

where we use the definition of the (log) desired markup (s, E—(mct" —pH,t> which is

(log) inverse of the real marginal cost.
Let define i, =p, —p being the deviation between the average and desired marginal

cost. Plugging the definition into the previous expression yields:

o0

-« ~ 1.(3-23)
1 9 -
th B kZ:; pH,t+k (1—a>+a€ Mtk

11—«
(1—0&)4—045'

Eq.(3-23) can be rewritten as:

with =
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00

ﬁHt Pyia= 1 9/8 Z <pH,t+k _@l[j’ﬂﬁk)_pH,tfl

k=0

:(1_9ﬁ) P +06pH,t+l +(96)2 P2 +"'}_pH,t 1 1 0 Z ‘96 G)Mt+k
k=0

Pu +08Pus1+(08) Py |08

=Py + P, + Q,Bp,_, t+1 (0/8)2 Prpia t }

—(1-08)>(68) Oh,.,
k=0

=Pur —Pria + eﬂ(pH,t+l “Pr ) + (eﬁ)z (pH,t+2 - pH,t+1) + (05)3 <pH,t+3 ~Phiti2 ) T+

_(1_9ﬁ) (‘96>k eﬁwk

k=0

=Ty, + 0571—/—/,&1 + (eﬁ)z T2+ (9ﬁ)3 Thera T 1 0o Z 05 elj’t+k
k=0

:i(eﬁ)kﬂ-mwk 1-— Hﬁ i eﬁ @/JHk

k=0
, (3-24)
Forwarding Eq.(3-24) one period yields:
ﬁH,t+1 - pH,t = 7T-H,lurl + G/BWH,tJrZ + (0/8)2 7TH,t+3 (eﬁ) H t+4
_(l_eﬁ)g{ﬂtﬂ +‘9B:&t+2 +(05) :[)’t+3 +(05)3 l&t+4 +}

1-08)0 P
L300 - B0 00

Multiplying 63 on the both sides of the previous expression yields:

95(@-{;4—1 Py ) = f: Ty esk — 1 Hﬂ)fxeﬂ)k @:&Hk '

k=1 k=1

Plugging the previous expression into Eq.(3-24) yields:
ﬁH,t Py =Ty T eﬁﬂ-H,er + (96)2 T t42 ((9ﬁ> Ty T
_(1 - Hﬁ)[@/}t + gﬂ@/ltﬂ + <9ﬁ)2 [)’H—Z + (Qﬁ)?’ ﬁ’t-&-S]

— e — (1= 08)07, + > (08) my s —(1-08)> (08) O,
k=1

k=1
Ty — (1 - 95)@,[% + 9ﬁ<'5H,t+1 - pH,t)
Plugging Eq.(3-19) into the previous expression yields:
1 R 1
19 e = e~ (1-08)04, OB e

which can be rewritten as:
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., :% _(1-08)04, +0ﬁ1_i97r,”+1 .

Then, we have:

Ty e = BTy oq — KL, (3-25)

(1-08)(1-0)
0

with k= ©. Eq.(3-25) is identical with Eq.(27) in the text.

3.6 Log-linearization of Intra-temporal Optimality Condition

Dividing both sides of Eq.(1-7) by Py ¢/Pn, yields:
w Vv

_t: n,t S;/ .
P U

H,t c,t

Plugging the previous expression into Eq.(1-24) yields:

V «
MC, =—=S; Ne
U, (1-a)

Total derivative of the previous expression is given by:

1 N 8V, V N° N° vV, N
amc, =| LN Vo o Ny Ny e N s
Ul-aON U l—-a N l1-a 7 U l-«a

A
Ul-«

VaulV
%

n

N, V. N® dU., V N°
o8N Yo ct I uds,
N Ul-a U Ul-a«

Plugging Eq.(2-9) into the previous expression yields:

o « _ « dU
avic, = 10 N (VN JldNe  1-a N dU,
NuS" 1—al V, N NuS"l—a U,
1—- N*
2 vds,
N uS" 11—«
VN dN du
-1 nn t -1 c,t -1
=t o | — 4 M dlS
v, N M U, K t

Multiplying both sides of the previous expression by p yields:

amc
MC

VaulV
%

n

t

du
leL . c,t —i—I/dSt,
N U

Cc

+«

which can be rewritten as:
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N )
log| —+|—log| —- |+ vlogs, .
o e

c

— mcC
By using the definition of mctzlog[MCt],

V_N . . .
2 the previous expression can be rewritten as:

Vn

'a

mc: = (p+a)n, —& +s,, (3-26)

where we use Eq.(3-9).
Eq.(3-14) implies as follows:

mc: + Py, =mc; +p
=l +pH,t + 1,
= _ﬂt + Py +

—~

or mc: =—[i,,

where we use mc, =—, +p,, which is derived by the definition of the desired

markup. Plugging the previous expression into Eq.(3-26) yields:
fie =& _<90+O‘>ﬁt —V5,.
Plugging the (log) production function y, :(1—a)ﬁt derived from Eq.(1-21) into the

previous expression yields:

N - +a .
:ut:ft_gp Ye =VS,
1-«

which is identical with Eq.(28) in the text.

3.7 Deriving the LM Equation

Eq.(1-8) can be rewritten as:
U

1t — it

U, 1+,

Multiplying —1 on both sides of the previous expression yields:
U/,t it

u, 14,
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Summing 1 both sides of the previous expression yields:

g Ju gk
Uc,t 1+it
o
C14Q, 140
1
14

Raise both sides of the previous expression to power —1 yields:

~-1
U
1+i, = M
Uc,t
Total derivative of the previous expression yields:
. U/ - -2 1 1 -2
d<1+lt):_ 1__ _UI (_1)UC Ucc__UIc dCt + __UII _UI (_1)UC Ucl st
UC UC UC
_ ) U U,
~(14p)" D e Delge, 4|0l D Dy
U u, U U U U U,
L
(1+p)2U Yep UelUepidC 1 Uy Ul
U, [\ U, U U, C U, u. L
U U U dc, Uu_ |d
(1t p)p||[ LYoo | B Gy Y
U UuU |C u U L
Dividing both sides of the previous expression by 1+ p yields:
d(1+i dc, dl,
< f>: ﬁc U UICC + UIIL+UICL
14p U U u | u U L
— Ucc C—iﬁC ﬂ_ _ﬂ[__|_ Zle 12t dl‘
U, U U, C U, u. )L
which can be rewritten as:
U u_ |dL U uu dc, 1d(1+i
—— |t =—|C——"EC .14l t»&ﬂ)
U u L U. U U. C p 1l+p
Iff —ﬂH—ﬁL— — ﬁc Y. U’CC =0, (3-28)
i c Uc Ul Uc
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U U U u u
——Lp 4= Cc——="C],(3-29)
i c Uc Ul Uc
is applicable.

Let assume U(C,L) :%(Clﬁﬁ )H . Then, we have:
— VUV

(L)
U —(1-9)h [CJ ,

L 9
UC,:ﬁ(l—ﬂ)(l—y)h’[E] L, (3-30)

B . L 9-1 .
U, =0—00 —(1-9)|h R

-V

with h'= (CHLﬂ)

Plugging Eq.(3-30) into the RHS of Eq.(3-29) yields:

[Yep VU
u - U U,

c

——[o(1-9)—d—(1-D)(1-v)

. (3-31)
=1

Plugging Eq.(3-30) into the LHS of Eq.(3-29) yields:

—%H%L:—[—m9—(1—19)]+q9(1—u)

i c

. (3-32)
=1
Plugging Eqgs.(3-31) and (3-32) into the LHS of Eq.(3-28) yields:

1—1=0.

Thus, Eq.(3-29) is applicable. Plugging Eq.(3-29) into Eq.(3-27) yields:
L C 1 1-+i
log|—|=— log| -+ |—=log| —|,
g[ L] g[ CJ g[ ]
L

p (1+p
d(1+i
where we use the fact that ﬂzlog[—f], Iog[&] and M:Iog
L L C 1+p

Uiy Yy
U )

1 c

Uy Yy

i c
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U U
By using definitions o, =——LL and ’UEU’CL, the previous expression can be

1 c

rewritten as:

~

(o, +U)it =(0,+v)E, —=I,,

p
which can be rewritten as:
a 1 R

| =¢c, ——i..

t t p(U,-i-U) t

By using the definition ¢, = , the previous expression can be rewritten as:

o,+v

=& —ni,, (3-33)

with 7 =Sk Eq.(3-33) is identical with Eq(29) in the text.
p
3.8 Relationship between Changes in the Real Money Balance

and Inflation

M
Total derivative of the definition of the real money balance L, E# is given by:

t

dm
dL, = Pf—i—(—l)P‘ZMdPt
_Mam, _mdp
PM PM
_,am,  dp
M M

Dividing both sides of the previous expression yields:
] M P

| =log|—-|—log|—|. (3-34)

o) el

First differential equation of Eq.(3-34) is given by:

N M M P P
| —1  =log|—|—log|—=|—|log|—+|—log|+
Co g[M] g[ M ] g[M] g[ M ]]

=logM, —logM, , —(IogR —|08PH) ’
= —’ﬂ't + Amt

which can be rewritten as:
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I, =1l +m—Am,.(3-35)
Eq.(3-35) is identical with  Eq.(30) in the text.

3.9 Log-linearization of the Consolidated Government Budget

Constraint

P P
By using the definition g(S,)=——=5; and P,=(1+i,)—, Eq(3-1) can be
PH,t F’f+1
rewritten as:

AM

t

9(S,) "G, +B,, (1+i )L =T, + B, +

t

. P, . . .
with II, =——. The previous expression can be rewritten as:
t—1

' . _ AM
B,=S,"6,+B,_,(14i_ ) ' —T,— p L.

t

Total derivative of the previous expression yields:

dB, =G(~v)dS, +dG, + (14 p)dB, , + Bd(1+i, ,)+B(1+ p)(—1)dII,
_th_d(AMt/Pt) '

Dividing both sides of the previous expression by Y yields:

dff = —gydst + dff - (1+p)%+%d(l+itl) —%(1+p)dﬂt
d1, d(AM,/P)
2
6, a1 , (3-36)

dB +i, )
1+ p)—L+ (14 p)b——2—b(1+ p)dIl
y )T (L )b P - b(1 4 ),

_dr, _d(AM,/R)
Y Y

where we use the definition b E% and the factthat G=0.

Seignorage can be rewritten as:
AM, . AM, P_, !

t—1

RooML R
AM,
= M - Ht 1Lt—1

t-1
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Total derivative of Eq.(3-37) yields:

d(AM, /P,)= ﬁdAMt —M?AMLAM, _, +A7ML(—1)dHt +A7Mst1

’

_ ﬁdAMt

where we use the fact that AM =0. Dividing both sides of the previous expression

yields by Y yields:

d(AM,/P) L dAM,
Y Y

, (3-38)

L
with y=—.
X Y
Plugging Eqgs.(3-9) and (3-38) into Eq.(3-36) yields:
b =8, +(1+ p)b,, +(1+ p)bi, , —b(1+ p)m, —tre — xAm, , (3-39)

~_dB, . _dG ~ _TR,—TR
with thTt’ g =—+ and tri=—1——

. Eq.(3-39) is identical with Eq.(31) in

t

the text.
A simple tax rule is given by:

{;t - 'L/}bb\t—l + ét ’ (3'40)

which is identical with Eq.(38) in the text.
Plugging Eq.(3-40) into Eq.(3-39) yields:

b, =(1+p—1,)b,_, +(1+p)bi, , —b(1+p)7, +§, —& — xAm,, (3-41)

which is identical with Eq.(39) in the text.

3.10 Relationship between the CPI Inflation and GDP Inflation
Eq.(3-3) can be rewritten as:

P, :<1_V>pH,t + VP,
= Py +Us,

First order differential equation of the previous expression is given by:
T = 7rH,t +V(St _st—1>l

which is identical with Eq.(32) in the text.
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3.11 Trade balance
Total derivative of Eq.(1-34) is given by:
d(NX, /P, )=dY, —vCdS, —dC, —dG, .

By dividing both sides of the previous expression by Y yields:

dNX,Be) _dY, s dC. dG,
Y Y C Y
which can be rewritten as:
NX, /P, ) Y C G
lo <t—Ht =lo —t]—lo S, )—lo [—t]—lo [—t]
g gy gg(S,)—log | log|

(NX, /P,

Let define nx: =log , which is the ratio of trade balance to the GDP. Then

the previous expression can be rewritten as:

nx: =y, —vs, — &, —§,, (3-42)

which is identical with Eq.(33) in the text.
Plugging Eqgs.(3-7) and (3-10) into Eq.(3-42) yields:

L ) Gt P
o

o
where we use ¢, =p, . Plugging o =1 into the previous expression yields:

—~

nx: = —Vﬁt ,

which implies that just the demand shock affects the trade balance under our
benchmark parameterization. As long as the demand shock hit does not hit the
economy, balanced trade attains (See Section 4.4 in the text).

4 Policy Regimes

Plugging tA)t =0 foralltinto Eq.(3-41) yields:

1 " b 1. 1.,
Amt :—<1+p)blt71 __(1+p)7rt +_gt — Sty
X X X X

which is identical with Eq.(40) in the text.
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5 Some Entities

The domestic and the imported goods inflation is given by:

which are Eqs(35) and(36) in the text, respectively.
The nominal exchange rate is calculated by:

S =€ TP “Prys

which is identical with Eq.(34) in the text.
Subtracting the first equality in Eq.(5-1) from the second equality in Eq.(5-1) yields:
Tt = Tt = Pre = Py — <pF,t—1 - pH,t—l)
=S5 751
which can be rewritten as:
Tee =S =Sy T Ty, (5-2)

Eq.(5-2) is identical with Eq(37) in the text.

6 Introducing Imperfect Pass-through

6.1 International Risk Sharing Condition

EP
Note that Q, =—-* can be rewritten as in the imperfect pass-through environment
t

as follows:

Qt = EtPt*
P

t
— EtPF,t
PR ,
P.. EP

Ft t'Ft

= 1-vpv
RRe B
1-v

_St \Ilt

which is identical with Eq.(A.1) in Appendix A. Plugging the previous expression into
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Eq.(1-10) yields:

« \—-1 Z
Ul=9(U.,) ST =L, (6-1
L=0(U) s 7 &

which is identical with Eq.(A.2) in Appendix A.
6.2 Foreign Retailers
Consider a foreign exporter exporting good j at a cost (i.e., price paid in the world

market) EtP;t (j) . Like local producers, the same exporter faces a downward sloping

demand for such goods and therefore chooses a price P,

. (J) » expressed in units of

domestic currency, to maximize:

o N 1
k
rggg;;;@FEt {Amk [ % ]

t+k

@_Psﬁk (j)(l_TF)

CF,t+k (1)} ’

t

~ — x \—1

P (J . . [P U,) 2z
with G, ()= [”—(j) Crrve Where A, =Q,. |5 ] = (;)1&

PF,t+k R (Uc,t+k) Z

denotes the discount factor, Q denotes the price of a one period discount bond

*
t,t+k

paying off one unit of foreign currency and 7, denotes an export subsidiary. The

previous expression can be rewritten as :

<l

tt| A%
Pt Et PF,t

E CF,t _R:,t (1)(1_7-F)[M

* 1 é:,t (j) é:,t (/) * . ’E?f,t (j)
r’{],if))“ Orlhe e [Pt:rl ] E, | P, Cren—Fren (/) (1 T ) P Cr e

—€&

2 *
+0 Af,t+2 Ft+2 ~ TFt+1

[ 1 ]é,tw)[é,t(f)

) E |P

Ft+2

o F! (f)(l—ﬂ)[é’tm

+2 t

The FONC for firms is given by:
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) PGB (A=) () B () R

n-,“Uz

(1-2)2

. 1
A
ﬁFt € pe
+9A“+1[ 1 ](1 5)_0) PF,t+1CF,t+1
t+1

A=7)(=€)P () PsCrrs

-
~

N

SO

—P o (J
- (j) R:Et+2CF,t+2

1](1 €>t

o _P/:,t+2 (f) (1 —Te )(_5) ISF,t (j)% P.‘-'g,tJrZCF,tJrZ

which can be rewritten as:

F"\
+
i
o

+9 At 42 [

(1B ) )) e RO
A | = || AL e — 1—7.)P il C
[HELED ¢, - Za-nmoEl) .,
1B (B () e , 5. ()
O o I LAY o I
t+1 t Ft+1 - Ft+1
1 P J P j_E € P j_E
R LD Lo IO

P..(Jj)
P

C

Ft4k?
-k

By using the definition CFIH_kltE[

rewritten as:
1
p

1
o 1]

1
+0? At t+2[P

6 * .
g (1>CF,t|t - zu — Tk )PF,t (j)CF,tlt

T )Cona

t,t

e .
c 1 (1 T )PF t+1 (1>CF,t+1|t

F.t (j>CFt+2|t (1 T >PFf+1<j>CF,t+2|t 4+..=0

E, ’ e—1

which can be rewritten as:
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« |1 P J € x
At,t E CF,tIt F;t( >_ cc:_1<1_7—F>PF,t (/)
. 1 P.(j € . .
+0At,t+l : CF,t+1|t F'tE—t(>_;(1_TF)PF,t+1 (f)
. 1 P..(j € . .
T o e L

The previous expression can be compact expression as:

= . 1 P € x
k F, —
k§:o:9 E, At,t+k [ETH(]CF,tJrkIt [E_:_ 8_1(1_7-F)PF,t+k] =0,(6-2)
where we use the fact that A (j)=PF,, and P, (j)=P ., in the symmetric

equilibrium. Eq.(6-2) is identical with Eq.(A.3) in Appendix A.
U

 \—1
: . [P ) Zil .
Plugging A,, = Qtﬁk[ ;ﬁk]:ﬁk (;)1?" into Eq.(6-2) yields:
<Uc,t+k) t

t
1 P € .
: ]CF,t+k|t [i_ (1_7-F )PF,tJrk] =0.

ooye| el 2

0 (Uc,t+k )71 2

By multiplying U.:Z: both sides of the previous expression yields:

NgE

P

t+k

E, e-1

==
Il

- k 1 * ﬁ & *
Z<0ﬁ> El— 7| ek Cr ke %_ _1<1_TF)PF,t+k] =0.
k=0 P (Uc,t+k) e €
Multiplying both sides of the previous expression by _ yields:
F,t—1 t—1
Z(Qﬁ) Et‘ N N —1 Zt+kCF,t+k|t F't/ —— <1_TF> — LAtk =0,
k=0 P (Uc,t+k) e /Etfl e—-1 Pk R‘-’,tfl/Etfl
which can be rewritten as:
0 1 . P, E E.P., E P
Z(Qﬁ)k E, | * : - Zt+kCF,t+k|t Ft Eva € (1_7_F) trkTFitk Tea TRk L
k=0 P (UC,Hk) Piw B2 -1 Peoie  Eerr Preaa
E, P P E
Let define W, , =-—"EMC and I, =Ltk 1 Then, the previous
A,t—l,t-&-k P E
F,t+k F,t—1 t+k
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expression can be rewritten as:

(1 g )\Ijt+k]:[%,t—1,t+k

X, 1 . P.E., ¢
Z<0ﬂ> Et . N —1 Zt+kCF,t+k|t i
k=0 Pk (Uc,tJrk) R::ffl E, -1
. P. E, . . .
Let define XF/ E . Then the previous expression can be rewritten as:
E’

X%,t -

- 1 "
Zwﬂ)k Et * N -1 Zt+kCF,t+k|t
) e—1

k=0 P (U

t+k c,t+k

which can be rewritten as:

XF/E,t

i(‘%)kﬁ * 1 Z* C PFt+k Er+k Pt—l

< (1-7,)¥,,1

’

Fpt—1,t+k

1 | Stk F k|
k=0 (UC,H,() Et+th+k Pk B —6_1(1 TF) F/t Lk
. - E.iPr Prew E .
By using the definition W, , =—"F26 gnd T/ = LUtk —t1 | the previous
Ft+k B PF,tfl Et+k
expression can be rewritten as:
X
00 « 1 L %,t
2(9[3) Bl Zt+kCF f+k|t\I]f+kH’7t Lt+k € =0.
k=0 <Ucrf+’<) o e—1 <1_ TF)\I/HkHF/E,tfl,Hk

The previous compact form can be rewritten as:
Z,C, V', X,

i) ] zicegwm %,

* -1 -
+9ﬂ[<uc,t+1> } Zt+1CF t+1|t\Ilt+1H/l t+1 F/E

207, -1
—|—<9ﬁ) [(Uc,tJrZ) } Zt+2CF t+2|t\I]f+2H/1t+2HF/1t+1HF/E X

e ’
+"':€i1<1_7F)[(U:,t> '

z'c

F tlt

IRET .
+96[< “+1) } ZtHCF,tHItZ(l_TF)

N €
+<9ﬁ)2[<uc,t+2) } Zt+2CF,t+2|t;(1_7F>+“.
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P../E P.E
with HF/t = F't/ LAt . Rearranging the previous expression yields:
& Pthl/Et 1 E P
+ \71 171
[(Uc,t> ] Z CF t|t\I/ H/

o o))

Zt+1CF t+1|r\Ilt+1H/l tHH/El

X
& 2ty . 1 -1 “1
+(0ﬁ> [(Uc,t+2> } Zt+2 F t+2|t\1/t+2H/ t+2HF/E t+1H/t
I ’
« 1771,
[(Uc,t> ] Zt CF,tlt
g -1 £
:8_1<1—’7'F><+0ﬁ[( ct+1) } Zt+1CFt+1|t;<1_TF>
IR c
<9ﬂ> [( ct+2) } Zt+2CF,t+2|t ;(1_7})"’
which can be rewritten as:
« 1771,
[(Uc,t) ] ZtCF,tIt
S 3 -1 e
7% - 8—1(1_7})* +9F/8[< ct+1> ] Zt+1CFt+1|tZ(1_7—F>
1771 « IS
( F6> ( ct+2> Zt+2CF,t+2|t—(1_TF>+“'
e—1

Z,C. U, 1HF/1t

-1

(6-3)

AN

Z..C

Ll

H 1

+0F5[( " )‘1}

7 S A

-1

*

-1

2 * -1
+(0F/8> [(Uc,t+2) j| Zf+2 F t+2|t\:[jt+2]:[/1 t+2]:[/;.[ t+1]:[4.
+...

or:
~ c— Z [( ct+k } Zt+kCF,t+k|t : (6'4)
X%'t = = 1 [ ]

Z l( ¢ t+k) } t+k F t+k|t kgnp t+h

6.3 Market Clearing Condition

Demands for export in the PTM environment is given by:
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* -1
P .
EX,=v|-25| C|
R,
P
=y|-2L C:
PF,t
p -1
H,t
=v|l—= C,
EtPF,t ’ (6_5)
p.P. |
=y| LB
PF,t EtPF,t
P. \(EP . | .
— L] tUFt Ct
PH,t PF,t
= I/St\I/th*

which is identical with Eq.(A.4) in Appendix A where we use the definition of LOOP gap

U, =L aswellas C, =Y, .
F,t

Plugging Eqgs.(1-12), (1-17), (1-20), (1-27), (1-26) and (6-5) into Eq.(1-25) yields:

—€

Pud) Yr:[m] e L2101 RS 011
PH,t H,t H,t H,t
P .. (P
=(1—”>[M SZ’Cf+V”'+(j> AAASS at) G,
PH,t‘ PH,t‘ PH,t‘
p —€ * ’
— ;(D (1-v)S/C, +vS,TY, +6,]
H,t
P(j)| *
— ;(J> (1-v)s/C, +vs LY, +6,]
H,t
o NN N0 . P,
where we use the LOOP implying that B, (j)=— and PH,t:E—'. By dividing
t t
both sides of the [ i [P'“(j)]_E ields:
previous expression by yields:
H,t

Y,=(1-v)S/C, +vS.¥,C; +G,, (6-6)

which is identical with Eq.(A.5) in Appendix A.
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6.4 The Steady State

We focus on equilibria where the state variables follow paths that are close to a
deterministic stationary equilibrium, in which II, =II, =1. Further, we assume

Z,=7 =1 and G,=0.
Egs.(1-6) and (1-9) implies as follows:

1
f=—
1+

1
T
which is identical with Eq.(2-1).
Eq.(1-7) implies that:
wo v,
U

c

7

which is identical with Eq.(2-2).
Eq.(1-8) implies as follows:

) ,
! — I,
0 B

which is identical with Eq.(2-3).
Eq.(6-4) implies:

c -1

- 5_1(1—TF)[1+6ﬂ+(6ﬂ)2 +...H(U:)_1} c,,

[1+68+(08) +- -H(U:)ll_l Cut

which can be rewritten as:

-1

U=[M(1-7.)|

with N\ = € being the constant markup. As long as we assume M(l—TF): 1,
e—1

=1, (6-7)

which implies that EPF* =P, is applicable. Eq.(6-7) is identical with Eq.(B.1) in
Appendix B.

Due to Eq.(6-7), Q=S"" is applicable, then the other steady state conditions are
identical to those in the perfect pass-through environment, namely, Section 2 in this
appendix.
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6.5 Log-linearization of the Model

6.5.1 Log-linearizing the International Risk Sharing Condition

Total derivative of the definition of the TOT is given by:

1 _
dst::___dF?t_FF}<__>FL2dFL;
P,
_pdn, PdB,
P, F P, P,
:SdP dPH,t

F,t _ .S
P P,

F

Dividing both sides of the previous expression yields:
as, _dh. ARy
S P. P,
Which can be expressed as:

S =Pre— Py

Total derivative of the definition of the

’

ER EP, P o
o tH__A S isgiven by:
Pl.L PF,t PH,t PF,t

Q=

dQ =S""dV, +¥(1—v)S™"ds,

:51*”&4_(1_”)5*1’@ ’
v S

which can be rewritten as:
g, = +(1-v)s,.(6-8)
Plugging Eq.(6-8) into Eq.(3-1) yields:

ét :_wt _(1_V)St +ét* _Ct

real  exchange

rate

which is log-linearized international risk sharing condition and is identical with Eq.(51)

in the text.

6.5.2 Log-linearizing the Market Clearing Condition

Total derivative of Eq.(6-6) is given by:

dy, = [(1 —v)uC+ 1Y ]dSt +(1—v)dC, +vY d¥, +vdY, +dG,

=v[(1—v)+1)vdS, +(1—v)dC, + 1Y d¥, +vdY, +dG,
=v(2—v)YdS, +(1—v)dC, +vY d¥, +vdY, +dG,

By dividing both sides of Eq.(2-3-8) by Y, we have:
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gﬁczu@—%ﬁd&%{l—yyﬁ}+Vd@(+yd§ +g§i
Y C Y Y

7

which can be rewritten as:
Y, C A G
Iog[—f]: v(2—v)logs, +(1—y)|og[—t]+ulog\lft +vlog| -+ -l—Iog[—‘],
Y C Y Y
The previous expression can be rewritten as:
91’ :I/(Z—V)St +<1_V)Et + v, +V}7: +ét’

which is identical with Eq.(52) in the text.
6.5.3 Deriving the Import Goods Inflation Equation in Imperfect

Pass-through Environment

c,t

(0.)] zic,

. B E IR _
+0F/8|:<Uc,t+1) :| Zt+1CF,t+1|t %l\llt-&IHF,1+1HF;

)?F,t‘ t
2 * -1 -1 * E E _ _ — —
+(9F6> [(Uc,t) } Zt+2CF,t+2|r EHZ ;1 \I]HlZHF;JrZHF,iHHF;
t+1 Ft
N
-1 L -1 L

e [(Uc,t) } Zt CF,tIt +‘9F5[<Uc,t) } Zt+1CF,t+1|t

= 1-7
i)

17171 «
+(6FB)2[(UC,L‘) 1] Zt+2CF,t+2|t T

Total derivative of Eq.(6-3) is given by:
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X, = [1 +0:8+(0,8) +-- -]U:CF (—1){[1 +0,8+(0,8) +- .}U:CF}‘Z

C,dU., +6,8C,dU. ., +(0.8) C.dU. ., +---

+U.C,dZ, +6,6U.C,dZ,., +(0.8) U.C.dzZ,,, +-

HULC, o +0,BU.dC, .y +(0.8) UdC, g+
xAH(—1)U.C,dT, +0,6(—1)U.C,dT, ., +(6,8) (—-1)U.C,dT,,, + -

H(-DUC 1465+ (6.8) +-- o, ,
+(-1)UC, [GFB +(0,8) +- -]dﬂ%m +(-1)UC [(9F5)2 +"']dﬂ%,t+z
‘_{_
-1
+{[1+0Fﬂ +(0F/8>2 +"'}U5CF}
¢ dU* « +0:0C; dUc tt (9F6>2C dU:t+2 +-
X|+UIC,dZ; +6,8U.C,dZ;,, +(0,8) U.C.dZ;,, +--

t+2

+UchF,t|t + eFﬁUchF,H—llt + (@ﬁ) UchF,t+2|t +-

which can be rewritten as:

ax,,, ={[1+0.5+(0,6) +---]u§cp}*l

U.C.dT, +06,8(~1)U.C.dT, , +(6.8) (—1)U.C,dT, , +-
+UC, [1+0,6+(0,8) +-- dil,,,
X4 >
* 2 * 2
FULC, |05+ (0.8) +--dIL, ., +UC,|(6,8) +--]dTl,
Further:

dU, +6,5dV, ,, +(6,8) d¥, , +---
+[1 + eFﬂ + (eFﬁ)z - ']dH%,t
+[0F6 + (eFﬁ)z +- .}dH%,tJrl +

—
|
-

X, , = [1+9F5 +(0,8) +

(6:8) +--|drL, .,

Note that 1+9ﬁ+(95)2+...:1 G Then, the previous expression can be

rewritten as:
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dU, +06,6dV,,, +(6,8) d¥,, +
(6.8)

d)?%,t :(1—‘9,:5) 1 0.3
+ dil,, + dil,,  +
1-6,3 7%t 1-6,3 7 1-6.3

= (10,3 d¥, +0,5d,., +(0,3)

+dll,  +0,6d1, +(6.8) dil, ., +

The definition of ;(7 can be log-linearized as:
et

dHF/E,tH +e

. (6-9)

dv,,, +-- }

dX,  =d

E

fof-

=d & —d _PFrH _
P

F F
Plugging the previous expression into Eq.(6-9) yields
erfl) = (1_9Fﬁ>[1/)t +9F/Bwt+l +(0Fﬂ)z ¢t+2 +"'}’ (6-10)
2
+[7T%,t +9F57T%,t+1 +<9Fﬁ> ﬂ-%,t+2 +- ]
], Ae, =

0

ﬁF,t _pF,tfl _( t

F t t—1

P

F

with — ;= —
W%'tzlogﬂ%t p;, =log

F

(@6)2 ¢t+3 +-- ]
-
Multiplying ¢ 5 on both sides of the previous expression yields
t )] = (1 - 9Fﬂ>[0F6¢t+l + <9F6>2 ¢t+2 + (‘9F5>3 ¢t+3
+[0F67T7E,t+1 < Fﬂ) 7t+2 ( Fﬁ) /t+3

Forwarding Eq.(6-10) one period yields
—€ ) = (1 - QFB) thrl + eFﬁ,L/)tJrZ +

2
[Tr%,t+1 + 9;577'%&2 + <9Fﬁ) 7TF/E,t+3

pF,t+1 - pF,t _( t+1

eFﬂ[ﬁF,tH Py — (eHl

Eq.(6-10) can be rewritten as
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Pre = Pres— (& —€a)=(1=0:B)d + 7,
+(1-6.8){6.800 +(6:8) ¥ +}
+[9Fﬂ7r%m +(0:8) 7, ]
Plugging Eq.(6-11) into the previous expression yields:
Pre—Proa— (& —et)=(1=0:8)¢, +m, +0,8[Be s — P, — (e, —e, )| (612)

Calvo-pricing’s transitory equation is given by:
1

B = [0+ (-0 )8

Ft — |YFTFt

Log-linearizing the previous expression around the steady state yields:

Pey =UePp, y + (1 —0; )ﬁF,t .
Subtracting pr:-1 from the both sides of the previous expression yields:

T = (1 _QF)(ﬁF,t _pFI*l)’
which can be rewritten as:

- 1
Pr: = Pria :HT‘—F,t . (6-13)

F
Plugging Eq.(6-13) into Eq.(6-12) yields:
L
1-6

F

1
Tt _(et _et—i) :<1_9F6)wt +7T75't +6,8 Hﬁmﬂ _<er+1 _et)

F

P../E
Log-linearizing the definition of H/ = F't/t =_ft

E
£, =
et PF,tfl /Et71 E, P

F,t

. (6-14)

-1
E
=L =TI, [—f] yields:
g Et 1

-1

dE _
dil,,  =dIl,, —Tf +(—1)E(—1)E*dE, _,
E
—= dHF . £ _|_ u

' E E

Thus, Eq.(6-14) can be rewritten as:
1 1
Tee — (et - epl) = (1 - 0F/8>wt e — (et - et71> + 0, 8| —— e 0 — (er+1 - et) ’

1—6, 1-6,

which can be rewritten as:
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1
1-6

F

1
— 1]7‘('” = (1 — 9F6>1/Jt + eFﬂll——Hﬂ-F'tH - (et+1 - et> .

F

1 1—(1-6;)

Notethat 1 _p ~ _ . Thus, the previous expression can be rewritten as:
1-06, 1-6,

].

<et+1 _et>'

1-0, [, 1
{(1 60060\,

Tey = M1 — (et+1 - et>

F

Finally, the previous expression can be rewritten as:

T, :ﬁﬂ-F,tJrl + (1_0F )0<1_9F6> ¢t B 6(10_9F>

F

which is Eq.(53) in the text.

Plugging =T, —(e,—e,,) into Eq.(6-10) yields:
/L

Bre—Pres (€€ ) = (1= 0.0) 080 +(0.8) Yyt |+ — (e e, )
—I—QFﬂ[me —(ess —et)] +(6,8) [ﬂ,wz —(e— er+1)] T

= (1= 0,0)[s + 0,80 + (0, oy

H(Prs—Pres) (e —€a) 4 00|(prics—Pri)— (e =€)

(OB (Prrsn—Prra) (e = )|+

=(1- eFm[wthﬁm (0.3 )%ﬁ“']

Pro 1 +(1=0,8)p +(1-6.8)0,00; .1 +(1=0.8)(0.5) Pr.r.
p.
+e ., —(1-6.8)e, ~(1-0,5)0,0e., —(1-6.5)(6.5) e, -
Uy + 0,00, +(0.8) yy +--- :
=(1—0,0)4Pre + 0,80 11 +(0:8) Provo +-|—Pr o1 e
—e,—0,0e,.,—(6,3) e

Rearranging the previous expression on p., —e, yields:

ey = =(1=0.8)3_(0:) [t + (proe =€)
k=0

which is identical with log-linearized FONC for foreign retailers in Section 6.5.1 in the
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text.

6.5.4 Some Entities
The nominal exchange rate is calculated by:

S, =€ +p: _wt Py -

which is Eq.(54) in the text.
The LOOP gap is calculated via:

€, :wt +pF,t _p:'

which is Eq.(55) in the text.
6.5.5 The Steady State in the Case of No Subsidiary

We focus on equilibria where the state variables follow paths that are close to a
deterministic stationary equilibrium, in which II, =II, =1. Further, we assume

Z,=7 =1 and G,=0.
Egs.(1-6) and (1-9) implies as follows:

1
f=—
1+

1
141§

7

which is identical with Eq.(2-1).
Eq.(1-7) implies that:
w_Vv

’

P U

which is identical with Eq.(2-2).
Eq.(1-8) implies as follows:

U, .
! — I,
0 B

which is identical with Eq.(2-3).
Eq.(6-4) implies:

- 5_1(1—TF)[1+6ﬂ+(6ﬂ)2 +...H(U:)_1}1CF )

[1+608+(08) +- -H(U:)ll_l Cut

€

which can be rewritten as:

-1

U=[M(1-7.)|
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with N\ = € being the constant markup. As long as we assume 7.=0,
e—1
U =M".(6-15)
Eq.(1-24) implies:
e L W
1-aP,
Which is identical with Eq.(2-5).
Eq.(1-16) can be rewritten as:
Vi _WH

n

[T
which is identical with Eq.(2-6).
Plugging Eq.(2-5) into Eq.(2-6) yields:

v, 1-ah,

n

U NMP’

which is identical with Eq.(2-7).
Plugging Eq.(2-8) into Eq.(2-7) yields:

vV, 11—«
U, N°Ms"’
which can be written as:
1_
n = c Uc'
N°MS”

which is identical with Eq.(2-9)
Eq.(6-1) implies:

Ut =o(U)) s
Plugging Eq.(6-15) into the previous expression yields:
U:l _ 19<U: )*1 S\

B . (6-16)

=9(U]) " w(S)
Note that:
w(S) =Q
* * 1-v
A - i] M. (6-17)
P PH PF PF PH

— Slfllel

Eq.(6-16) can be rewritten as:
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s =0(U) SM U,
Plugging the previous expression into Eq.(2-9) yields:

1—« M
N 9(ur) sm

- . (6-18)

S—o0

Notice that H, <0, LiL"OH(S'U:): +o0o0 and lim H(S,UZ)zO (g, >0).
On the other hand, the market clearing Eq.(6-6) implies:
Y=(1-v)S"C+vM'SY’, (6-19)

whereweuse C =Y.

Because of C :F<U;1> and Eq.(6-16), we have:

c= F[ﬁ(UZ )" w(s)]
- F[ﬁ(uj )" s“Ml]
with F being the operator of function.

Plugging the previous expression into Eq.(6-19) yields:

Y= (1—V)S”F[19<UZ)_1 SMT

+vSC”. (6-20)

Let define J(S,C*>E(1—V)5VF[19(U:>71517’/1\/[71]—{-1/5\/*. Note that J,>0 ,
Isiir(\)J(S,C*):O and SILn;J(S,C*)Z—Foo.

Hence, given a value for €, ¥ and Y, Egs.(6-18) and (6-20), jointly determine the
steady state value for S and w(S), i.e., the steady state value of the TOT and the real

exchange rate.
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Dividing both sides of Eq.(6-19) by C" yields:

Y* =(1-v)s" C +uvM'S.
C o

For convenience, and without loss of generality, we can assume that initial conditions
C

P

(i.e., initial distribution of wealth) are such that ¢ =1 which implies that Q=

Plugging this condition into the previous expression yields:

2_/* (1-v)s"Q+vSs

(1-v)8"S"™ W +vs
(1-0)¥+4]s

where we use a steady state condition Q=S""T¥ which stems from Eq.(A.1).

which can be rewritten as:
Y =[(1-v)¥ +v|sY", (6-20)

by using Y =C" which is the steady state market clearing condition in the foreign
country. Eq.(2-15) is no longer applicable.
Eqgs.(2-17)—(2-20) is still applicable. Thus. Eq.(2-21), i.e., S=1 is applicable. However,
even if plugging Eq.(2-21) into Eq.(6-20), we cannot obtain Eq.(2-15) because ¥ =1 is
not applicable.
Plugging Eq.(2-21) into a steady state condition Q=S""U vyields:
Q=M"1, (6-21)
where we use Eq.(6-15). The PPP in the long run is no longer available.
Plugging Eq.(6-21) into the initial condition yields:
C=CM",(6-22)
Thatis, C=C" is no longer available.
Plugging Eq.(6-22) into Eq.(6-20) yields:
Y=|1-v)M* +v|cM
=(1—v)C+vCM
:[(1—1/)+1/M]C

Thus, Y=C isno longer available.
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Figure TA--1

H(S, Ux)
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S=QV-v) S=Ql/1-v)
(Relative) PPP in a Small Open Economy in the Steady State
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